SinoCeramics

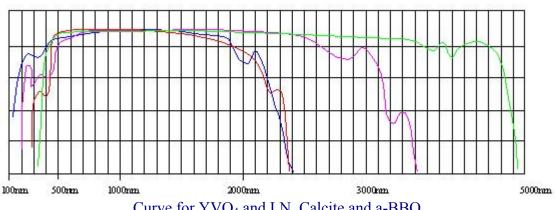
Optical Components: *Other Crystals*

Table of Contents...

YVO ₄ Crystal	2
KDP and KD*P	4
BSO and BGO	6
Solid State Laser Solution with Crystals	7

YVO₄ Crystal

The yttrium vanadate (YVO₄) is a positive uniaxial crystal crown with Czochralski method. It has good mechanical and physical properties and is ideal for optical polarizing components because of its wide transparency range and large birefringence. It is an excellent synthetic substitute for Calcite $(CaCO_3)$ and Rutile $(TiO2_2)$ crystals in many applications including fiber optic isolators, circulators, beam displacers, and other polarizing optics, etc.

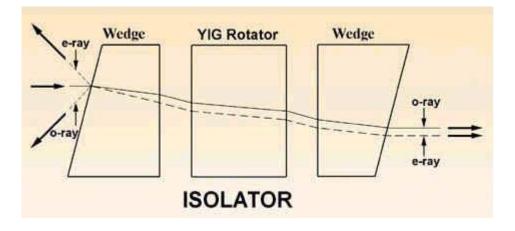


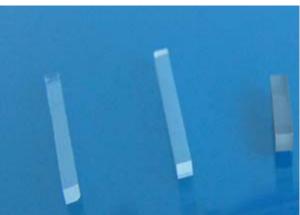
Basic Performance for YVO₄ Crystals

usie i eriormanee for i i oq erystans				
Transmission Range:	0.4-5.0μm			
Crystal Cell:	a = b = 7.12A, $c = 6.29A$			
Density:	4.22g/cm ³			
Mohs Hardness	5, like glass			
Thermal Expansion Coefficient:	$a_a = 4.43 \times 10^{-10}$	$a_a = 11.37 \times 10^{-6} / K$		$_{\rm a} = 11.37 {\rm x} 10^{-6} / {\rm K}$
Thermal Conductivity Coefficient:	up C: 5.23W	//m/K °C C:5.10W/m/K		C C:5.10W/m/K
Thermal Optical Coefficient:	$dn_a/dT = 8.5 \times 10^{-6}/K$		$10^{-6}/K$ $dn_c/dT = 3.0x10^{-6}/K$	
Refractive Index, Birefringence Walk-Off Angle @ 45°(ρ)	$n_o = 1.9929$ $n_o = 1.9500$ $n_o = 1.9447$	-	2.2154 2.1554 2.2486	$ \begin{aligned} \rho &= 6.04^{\circ} @ 0.63 \mu m \\ \rho &= 5.72^{\circ} @ 1.31 \mu m \\ \rho &= 5.69^{\circ} @ 1.55 \mu m \end{aligned} $

Sellmeir Equations for Pure YVO4 Crystal:

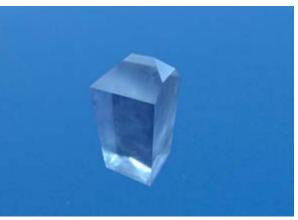
$$\begin{split} &n_o{}^2 = 3.77834 + 0.069736 \, / \, (\lambda^2 - 0.04724) - 0.0108133\lambda^2 \\ &n_e{}^2 = 4.59905 + 0.110534 \, / \, (\lambda^2 - 0.04813) - 0.0122676\lambda^2 \end{split}$$


Curve for YVO₄ and LN, Calcite and a-BBO


Comparision with Other Birefringent Crystals

- Compared with Calcite, YVO₄ has better temperature stability, physical and mechanical properties.
- Compared with Rutile (TiO₂), YVO₄ has lower Mohs hardness, it is easy to be manufactured for high surface quality of components, that is base for mass production.
- Compared with LiNbO₃, YVO₄ has more than three times birefringence than it, that makes your systems become more compact.

Sinoceramics provides crystal wedges based on a crystal's birefringent property to control and isolate the back light transmission in fiber. As shown in the figure below, two birefringent wedges are used together with a YIG rotator to construct the core of a fiber optic isolator.


Sinoceramics manufactures (currently mass produces) birefringent wedges for optical fiber communication with. High isolation and low insertion loss can help our customer to produce high quality isolators.

KDP and KD*P

Potassium Dihydrogen Phosphate (KDP) and Potassium Dideuterium Phosphate (KD*P) are among the most widely-used commercial NLO materials. They are commonly used for doubling, tripling and quadrupling of Nd:YAG laser at the room temperature. In addition, they are also excellent electro-optic crystals with high electro-optic coefficients, widely used as electro-optical modulators, Q-switches, and Pockels Cells, etc.

- Good UV transmission •
- High optical damage threshold
- High birefringence high nonlinear coefficients

KDP KD*P				
Chemical Formula	KH ₂ PO ₄		KD ₂ PO ₄	
Crystal Structure	Tetragonal		Teragonal	
Transmission Range	200-1500nm		200-1600nm	
Nonlinear Coefficients	d ₃₆ = 0.44pm/v		d ₃₆ = 0.04pm/v	
Refractive Indicies (@ 1064nm)	n _o = 1.4938	n _e = 1.4599	n _o = 1.4938	n _e = 1.4599
Electro-Optical Coefficients	r ₄₁ = 8.8pm/v	r ₆₃ = 10.3pm/v	r ₄₃ = 8.8pm/v	r ₆₃ = 25pm/v
Longitudinal Half-Wave Voltage	V _p = 7.56KV	(1 = 546nm)	V _p = 2.98KV (1 = 546nm)	
Absorption	0.07/cm		0.006/cm	
Temperature Synchronism Width	11.5°C⋅cm		7.4°(C∙cm
Spectral Synchronism Width	106°·cm		32°	·cm
Angle Synchronism Width	0.84mrad·cm		0.94mrad·cm	
Absorption Coefficient , cm ⁻¹	0.07		0.006	
Mohs Hardness	2.5		2.5	
Optical Damage Threshold	> 5GW/cm ²		> 3GW/cm ²	
Extinction Ratio			30dB	

Physical and Optical Properties

Sellmeir Equations for KDP:

 $\begin{array}{l} n_{o}^{\ 2} = 2.259276 + 0.01008956 \, / \, (\lambda^{2} - 0.012942625) + 13.005522\lambda^{2} \, / \, (\lambda^{2} - 400) \\ n_{e}^{\ 2} = 2.132668 + 0.008637494 \, / \, (\lambda^{2} - 0.012281043) + 3.2279924\lambda^{2} \, / \, (\lambda^{2} - 400) \end{array}$

 $\begin{array}{l} \label{eq:sellmeir Equations for KD*P:} \\ n_o{}^2 = 1.9575544 + 0.2901391 \ / \ (\lambda^2 \ - \ 0.0281399) \ - \ 0.02824391\lambda^2 + 0.004977826\lambda^4 \\ n_e{}^2 = 1.5005779 \ + \ 0.6276034 \ / \ (\lambda^2 \ - \ 0.0131558) \ - \ 0.01054063\lambda^2 \ + \ 0.002243821\lambda^4 \end{array}$

Application:

- Second, third, and fourth harmonic generation of Nd:lasers
- Frequency doubling of dyer laser
- High power laser frequency conversion materials
- Shutter for high speed photography
- Electro-optical modulator and Q switches

KD*P Single Crystal Standards				
Designation	Operation	Input	Output	
53.7°	SHG (II)	1064nm	532nm	
59.5°	THG (II)	1064nm + 532nm	355nm	
63.7°	SFM (II)	1064nm + (421-1000nm)	302 - 515nm	
86°	FHG (I) angle tune	532nm	266nm	
90°	FHG (I) temperature tune	532nm	266nm	
36.6°	SHG (I)	1064nm	362nm	
46.8°	THG (I)	1064nm + 352nm	355nm	

KDP and KD*P Specifications

Wavefront Distortion:	< 8 @ 633nm
Dimension Tolerance:	(W ± 0.1mm)x(H ± 0.1mm)x(L +0.2mm/ - 0.1mm)
Clear Aperture:	> 90% central area
Flatness:	λ /8 @633nm
Surface Quality:	10/5 to MIL-O-13830A
Parallelism:	Better than 20 arc seconds
Perpendicularity:	5 arc minutes
Angle Tolerance:	$\Delta \theta < 0.3^\circ$, $\Delta \phi < 0.3^\circ$
Quality Warranty Period:	One year under proper use

BSO and BGO

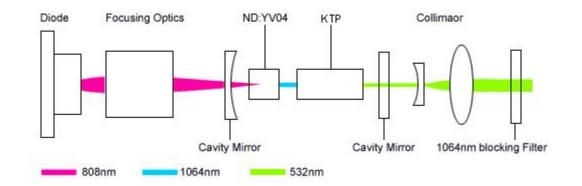
 $Bi_{12}SiO_{20}$ (BSO, Bismuth Silicate) and $Bi_{12}GeO_{20}$ (BGO, Bismuth Germanite) single crystals are grown by the Czochralski method. The crystals have been widely used in Photorefractive, photoconductive, electro-optic, acousto-optic applications such as two-wave mixing, four-wave mixing, phase conjugation, real-time interferometry, optical date storage, surface acoustic devices, and electro-optic devices.

Crystal	Bi ₁₂ SiO ₂₀ (BSO)	Bi ₁₂ GeO ₂₀ (BGO)
Symmetry	Cubic , 23	Cubic , 23
Melting Point	900°C	930°C
Density	9.2g/cm ³	9.2g/cm ³
Mohs Hardness	4.5	4.5
Transparency Range	450-7500nm	70-7500nm
Transmittance @ 633nm	69%	67%
Refractive Index @ 633nm	2.54	2.55
Dielectric Constant	56	40
Electro-Optic Coefficient	$r_{41} = 5 \times 10^{-12} \text{ m/V}$	$r_{41} = 3 \times 10^{-12} \text{ m/V}$
Resistivity	5x10 ¹¹ Ω⋅cm	8x10 ¹¹ Ω·cm
Loss Tangent	0.0015	0.0035

Basic Properties

Specifications

Polishing:	2 faces or 6 faces
Flatness:	< λ /8 @ 633nm
Wavefront Distortion:	< λ /4 @ 633nm
Parallelism:	< 30"
Surface Quality:	20/10 to MIL-O-13830A


Sinoceramics provides large sizes of BSO and BGO along with high quality. We provide as-cut and polished BSO and BGO crystals and <110> and <001> cut wafers. The size and orientation can be changed upon request by our customers.

Solid State Laser Solution with Crystals

Sinoceramics provides many kinds of crystals and optical components for solid-state laser applications, including 1064nm, green laser (532nm), blue laser (473nm), 355nm, etc. We supply a range of products from laser crystals, to NLO crystals, to mirrors, to output couplers, to polarizers to assemblies.

Laser Type	Solution	Power mW/cm ²
1064nm laser (pulse)	Nd:YAG + Cr:YAG + Mirrors	0.1-3.0J
1064nm laser (CW)	Nd:YVO ₄ + Mirrors	50mW-1W
	Nd:YVO ₄ + LBO + Mirrors	10-500mW
Green laser	Nd:YVO ₄ + BBO + Mirrors	10-500mW
	Nd:YVO ₄ + KTP + Mirrors	1-100mW
Blue laser	Nd:YAG + BiBO + Mirrors	1-100mW

